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ABSTRACT 

With the growing popularity of meta-analytic 
techniques to analyze and synthesize results across sets 
of empirical studies, has come concern about the 
sensitivity of traditional tests in meta-analysis to violations 
of assumptions.  Such violations are particularly 
distressing because the tenability of such assumptions in 
primary studies is often impossible to evaluate. 
Permutation tests for linear models may provide a robust 
alternative to more traditional tests. A variety of 
permutation strategies for linear models have been 
proposed in the literature, and recent research (Kromrey & 
Hogarty, 2002; Hogarty & Kromrey, 2003) suggests that 
such approaches provide superior Type I error control 
when assumptions of normality and homogeneity of 
variance are violated. This paper presents a SAS macro 
that calculates four permutation tests of regression 
weights in linear models applied to meta-analysis (tests 
developed by Freedman & Lane, 1983; Ter Braak, 1992; 
Kennedy, 1995; and Manly, 1997), as well as the 
traditional parametric WLS test of these weights (Hedges 
& Olkin, 1985). The macro constructs a weighted linear 
model using a set of observed effect sizes, sample sizes, 
and values of hypothesized moderator variables that are 
supplied as inputs, and outputs the parameter estimates 
and probabilities obtained from the five testing procedures. 
The paper provides a demonstration of the SAS/IML code, 
sample output, and examples of applications in simulation 
studies. 
 
INTRODUCTION 

Meta-analysis is a popular technique in many fields 
for statistically analyzing and synthesizing results across 
sets of empirical studies. Meta-analytic techniques provide 
a variety of models and procedures for pooling effect sizes 
across studies and for evaluating the effects of potentially 
moderating variables (Cooper & Hedges, 1994). However, 
both substantive concerns and statistical concerns about 
meta-analysis have been raised in the literature. For 
example, Fern and Monroe (1996) contended that the 
"interpretation and comparison of effect size across 
research studies is complicated by differences in 
substantive problems, theoretical perspectives, research 
methods, and researchers' goals" (p. 95). Further, 
concerns have been raised about the Type I error control 
and statistical power of meta-analytic tests when key 
assumptions are violated (Chang, 1993; Harwell, 1997; 
Hogarty & Kromrey, 1999). The sensitivity of traditional 
tests in meta-analysis to violations of assumptions is 
particularly distressing because the tenability of such 
assumptions (e.g., population normality, variance 
homogeneity) in the primary studies is often impossible to 
evaluate unless sufficient details are presented in reports 

of primary studies (and such details are frequently not 
provided; Keselman, et al., 1998). The severity of the 
concerns that have recently been expressed in the 
literature suggests that alternative statistical approaches 
to meta-analysis are needed. Permutation tests may 
provide such a robust alternative. 
 
STATISTICAL TESTS FOR META-ANALYSIS 

A fundamental purpose of meta-analysis is to 
differentiate between (a) collections of effect sizes that 
represent samples from a common population (i.e., having 
a common population effect size and differing from each 
other only because of sampling error) and (b) collections 
of effect sizes from different populations (i.e., having 
different population effect sizes).  For the former situation, 
effects sizes may reasonably be pooled to provide both an 
estimate of the common population effect size and a 
confidence band around the estimate. For the latter 
situation, population effect sizes and confidence bands are 
estimated for each of the distinct populations.  

Traditional Parametric Tests. Most meta-analysts use 
the family of Q tests (Hedges & Olkin, 1985) as tools for 
differentiating between these situations. According to 
Harwell (1997), from 1988 to 1995, of the 52 quantitative 
meta-analyses published by Psychological Bulletin, 60% 
employed Hedges’ homogeneity test.  The Q test of 
homogeneity evaluates the observed variability in sample 
effect sizes relative to the expected variability if all studies 
were sampled from a common population. Rejecting the 
null hypothesis of this Q test suggests that some 
(unspecified) moderator variable is present. 

The logic of the Q test of homogeneity extends to the 
evaluation of between-group differences in mean effect 
sizes, a strategy that generalizes to the use of linear 
models for analysis of effect sizes (see, for example, 
Hedges, 1994; Raudenbush, 1994). That is, a linear model 
is fit to observed effect sizes: 

0 1 1 2 2 ... p pd X X X eβ β β β= + + + + +  

where the Xs represent potential moderator variables, 
and the iβ  represent the partial regression weights that 
relate the potential moderators to the observed effect 
sizes. 

The parameters of this model are typically estimated 
using weighted least squares (WLS) or maximum 
likelihood (ML) methods that take into account differences 
in the sampling variability of the observed effect sizes. 
That is, the effect sizes are weighted by the inverse of the 
estimated sampling error. 

As Harwell (1997) notes, despite the wide application 
of the Q test, the meta-analytic  methodological literature 
provides little guidance in assessing the credibility of Q-
test results if its assumptions are not tenable.  Similar 



  

concerns have been expressed by other researchers 
regarding the behavior of the Q-test when the underlying 
assumptions have been violated (Chandrashedaran  & 
Walker, 1993; Chang, 1993; Wolf, 1990).  

Permutation Tests. Permutation tests provide a 
promising approach to testing hypotheses in a variety of 
data structures. According to Good (1994), permutation 
tests are among the most powerful of statistical 
procedures available, offering robust alternatives in the 
face of violations of the assumptions of traditional 
parametric tests.  The permutation strategy involves a 
comparison of the observed test statistic (e.g., differences 
in class mean effect sizes or estimated regression 
weights) with the set of values obtained through a 
rearrangement of the data.  These rearrangements are 
repeated until a distribution is obtained for all possible 
permutations (an exact permutation test) or for a large, 
random sample of permutations (an approximate 
permutation test). This distribution of test statistics 
obtained from the permutations of the observed data 
provides an empirical sampling distribution with which to 
compare the observed test statistic. The permutation 
strategy holds promise for providing a method of testing 
hypotheses in meta-analysis, avoiding the problems of 
poor Type I error control and power associated with the Q 
test. 

The application of permutation tests to partial 
regression weights is more challenging than the 
application to bivariate relationships. In bivariate models 
such as a zero-order correlation or bivariate regression, 
any pairing of the observed x and y values is equally 
probable under the null hypothesis. Thus, the elements of 
the y vector (or equivalently, the x vector) may be directly 
permuted to construct a statistically valid test of the null 
hypothesis. With multiple regression applications, and the 
construction of permutation tests for partial regression 
weights, such naïve permutation is not valid because the 
observed y values are a function of the set of regressors, 
rather than a single regressor (i.e., the observed y values 
are not exchangeable under the null hypothesis that a 
particular partial regression weight is zero). The 
permutation needs to be conducted on that part of y and 
that part of xi that are unrelated to the other regressors.  
Thus the focus is on partial correlation coefficients to 
derive a test for the regression weights. Differences 
among permutation methods suggested in the literature 
reflect differences in how these partial correlations should 
be obtained when conducting a permutation test. 

Consider the typical squared partial correlation 
coefficient (in this example, the correlation between y and 
z, while controlling for x) as the correlation between two 
residuals: 
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where resy.x is the residual of y after removing x (note 
that x may be a single variable or a set of regressors). 
This squared partial correlation is used as the test statistic 
for testing the partial regression weight of z in the equation 
with the x variables. The differences among the four 
methods reflect differences in the statistics used to 
construct the permutation distribution. 

The four methods will be illustrated using a simple 
example of a criterion variable (y) and a set of regressors 

[x, z]. The regressors have been partitioned into a set x 
and a single regressor z. In meta-analytic applications, y 
represents the observed effect sizes and the regressors 
are potential moderating variables. For a given sample of 
observed values of y, z and x, y is regressed on x to 
obtain the residuals resy.x and the predicted values y’. 
Subsequently, z is regressed on x to obtain the residuals 
resz.x. 

The permutation distribution suggested by Freedman 
and Lane (1983) is constructed by permuting the residuals 
resy.x and adding them to the predicted values y’ to 
construct a new set of y variables (these new variables are 
represented as yP because they are not actual data that 
were observed, but are constructed from a single 
permutation of the observed data). Now, these yP values 
may be regressed on x to obtain another set of residuals 
that are unique to this permutation of the data (res_FLy.x) 
and the squared partial correlation coefficient for this 
permutation is obtained as: 
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Note that the residuals involving z and x have not 
changed in the permutation – their values are constant 
across the set of permutations. 

The permutation distribution suggested by Kennedy 
(1995) is also constructed by permuting the residuals 
resy.x, but they are not recombined with the original 
predicted values. Rather, these permuted residuals are 
entered directly in the calculation of the squared partial 
correlation: 

( )2

. .2
. 2 2

. .

_ y x z x
yz x

y x z x

res res
KEN r

res res
= ∑

∑ ∑
 

The only value that will change across permutations is 
the numerator of this formula, because each permutation 
will result in new pairings of the two residuals, while the 
sum of the squared residuals remains constant. 

Manly (1997) suggested that the original observed y 
values may be permuted, and the regression of these 
permuted y values on x may be obtained, providing 
residuals (res_MNy.x). These residuals, which will be 
unique for each permutation of the y vector, are used to 
compute the partial correlation: 
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Finally, Ter Braak (1992) suggested a permutation 

distribution that is similar to the Freedman and Lane 
approach, except that the residuals being permuted are 
obtained from regressing y on both z and x simultaneously 
(called the full model residuals). For a given sample of 
observed values of y, z and x, the observed values of y 
are regressed on x and z simultaneously to obtain the 
residuals resy.xz. The permutation distribution suggested 
by Ter Braak is constructed by permuting these residuals, 
then regressing them on x (only) to obtain another set of 
residuals that are unique to this permutation of the data 
(res_TBy.x). The squared partial correlation coefficient for 



  

this permutation is obtained as 
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In all four methods, the observed value of the squared 
partial correlation is used as the test statistic, however, the 
four methods yield different permutation distributions 
against which the value is evaluated to obtain probability 
statements. Previous investigations of these approaches 
to testing weights in linear models (e.g., Anderson & 
Legendre, 1999; Anderson & Robinson, 2001) suggest 
that they yield nearly identical asymptotic distributions, but 
evidence substantial differences in finite samples. Further, 
these approaches have not been investigated in the 
context of weighted estimation in linear models such as 
that presented by meta-analysis. 
 
 
MACRO METAPERM 

A SAS/IML macro was designed to compute the tests 
of regression weights using the permutation methods as 
well as the standard WLS approach. The macro was 
developed to provide researchers with an easily 
accessible tool for conducting robust tests in meta-
analysis. Inputs to the macro include the name of the SAS 
dataset containing the effect sizes and information about 
study characteristics, variable names in the SAS dataset 
for the effect sizes and sample sizes in the primary 
studies, the number of regressor variables to be included 
in the model, the number of permutations to execute and 
the alpha level for the tests of weights. The names of the 
regressor variables in the SAS dataset must be X1, X2, 
X3, etc. 
 
*+-----------------------------------------------------------------------------+ 

Inputs to the macro: 
dsn: name of SAS data set with effect sizes and study 

characteristics 
eff_size: name of variable that represents the observed effect 

sizes 
n1, n2: name of variable that represents sample sizes in the 

two groups 
n_x: number of regressor variables for the model 
n_perms: number of permutations to generate 
alpha: nominal alpha level for tests 

+-----------------------------------------------------------------------------+; 
 
%macro METAPERM (dsn,eff_size,n_1,n_2,n_x, n_perms,alpha); 
proc iml; 
* +--------------------------------------------------------------------+ 
   Subroutine to randomly permute the rows in a matrix 
   Input: ORIG_MTX 
   Output: PERM_MTX 
  +-------------------------------------------------------------------+; 
start permute(orig_mtx,perm_mtx); 
  L = nrow(orig_mtx); 
  W = ncol(orig_mtx); 
  perm_mtx=J(L,W,0); 
 
  Ranvec=J(L,1,0); 
  do i = 1 to L; 
   Ranvec[i,1] = ranuni(0); 
  end; 
  Rankvec = rank(ranvec); 
 
  do i = 1 to L; 

   perm_mtx[i,] = orig_mtx[rankvec[i,1],]; 
  end; 
Finish; 
 
*+-------------------------------------------------------------------------+  

Subroutine to calculate the WLS tests of fixed-effects 
models and residuals to use in permutations. 
Inputs to the subroutine are 

di_vec - column vector of effect sizes (d) 
n_vec  - matrix (k X 2) of sample sizes corresponding to each 

effect size 
X_Matrix - Matrix of potential moderator variables 

 
Outputs are 

Vi - reciprocals of variances, used for weights 
B_wls - regression weights for full model 
SE_B  - Standard errors of the regression weights 
Resid_wls - Matrix of weighted least squares residuals, first 

column from full model, other columns 
from leaving out each regressor 
Resid_ols - Matrix of ordinary least squares residuals, each 

regressor predicted by others 
Partcorr  - vector of partial correlations of Y with each 

regressor 
Pred_wls - Matrix of wls predicted values 
Pred_ols - Matrix of ols predicted values of each regressor 

  +--------------------------------------------------------------------------+; 
start calcreq(di_vec,n_vec,X_Matrix,Vi,B_wls,SE_B, 

Resid_wls,Resid_ols,partcorr,pred_wls,pred_ols); 
 
* calculate variance for each effect size; 
  k = nrow(di_vec); 
  var_di=J(k,1,0); 
  Vi=J(k,1,0); 
  do i = 1 to k; 

var_di[i,1] = ((n_vec[i,1]+n_vec[i,2])/ (n_vec[i,1]#n_vec[i,2])) 
+ 

((di_vec[i,1]##2)/(2#(n_vec[i,1]+n_vec[i,2]))); 
    Vi[i,1]=var_di[i,1]##-1; 
  end; 
  *+------------------------------------------------------------------------+ 
     Weighted least squares estimation using Vi as weights 
   +------------------------------------------------------------------------+; 
* All regressors; 
  X = X_Matrix; 
  B_wls = INV(X`*DIAG(Vi)*X)*X`*DIAG(Vi)*di_vec; 
  Resid_wls = di_vec - X*B_wls; 
  Pred_wls = X*B_wls; 
  cov_b = INV(X`*DIAG(Vi)*X); 
  SE_B = SQRT(vecdiag(cov_b)); 
 
* Leaving out each regressor; 
  N_X = ncol(X); 
  do col = 2 to N_X; 
   do col2 = 1 to N_X; 
    if col2 = 1 then temp_X = X[,1]; 
    if col2 > 1 then do; 
     if col2 ^= col then temp_X = temp_X||X[,col2]; 
    end; 
   end; 
 
   Target_X = X[,col]; 
   B_wls_T = INV(temp_X`*DIAG(Vi)*temp_X)* 

temp_X`*DIAG(Vi)*di_vec; 
   Resid_wls = Resid_wls || (di_vec - temp_X*B_wls_T); 
   Pred_wls = Pred_wls || (temp_X*B_wls_T); 
   B_ols_T =INV(temp_X`*temp_X)*temp_X`*Target_X; 
   if col = 2 then do; 
     Resid_ols = (Target_X - temp_X*B_ols_T); 
     Pred_ols = temp_X*B_ols_T; 
   end; 
   if col > 2 then do; 
     Resid_ols = Resid_ols || (Target_X - temp_X*B_ols_T); 
     Pred_ols = pred_ols || (temp_X*B_ols_T); 



  

   end; 
  end; 
 
* Compute partial correlations; 
  partcorr = J(N_X-1,1,0); 
  do col = 1 to N_X - 1; 
    num = 0; 
    denom1 = 0; 
    denom2 = 0; 
    do row = 1 to k; 
      num = num + Vi[row,1]#(resid_wls[row,col+1] # 

resid_ols[row,col])##2; 
      denom1 = denom1 + Vi[row,1]# resid_wls[row,col+1]##2; 
      denom2 = denom2 + resid_ols[row,col]##2; 
    end; 
    partcorr[col,1] = num/(denom1 # denom2); 
  end; 
finish; 
 
* +--------------------------------------+ 

   Main program 
 +--------------------------------------+; 
use &dsn; 
 read all var{&eff_size} into di_vec; 
 read all var{&n_1} into n1; 
 read all var{&n_2} into n2; 
  n_vec = n1||n2; 
  free n1 n2; 
 %do i = 1 %to &n_x; 
   read all var{x&I} into temp_x; 
   if &i = 1 then do; 

   X_Matrix = temp_x; 
   End; 
   If &I > 1 then do; 

   X_matrix = X_matrix || temp_x; 
   End; 
  %end; 
k = nrow(x_matrix); 
X_matrix = J(k,1,1)||X_Matrix; 
 
run calcreq(di_vec,n_vec,X_Matrix,Vi,B_wls,SE_B, 

Resid_wls,Resid_ols,partcorr,pred_wls,pred_ols); 
 
* +--------------------------------------------------------------+ 
   Normal theory WLS tests of regression weights 
  +-------------------------------------------------------------+; 
Xs = ncol(X_Matrix) - 1; 
PROB_FEZ = J(Xs,1,0); 
do ii = 2 to Xs+1; 
  FE_Z=B_wls[ii,1]/SE_B[ii,1]; 
  PROB_FEZ[ii-1,1] = 2#(1-probnorm(abs(FE_Z))); 
end; 
Resid_wls = resid_wls||di_vec; 
 
FL = J(Xs,1,0); 
Ken = J(Xs,1,0); 
MN = J(Xs,1,0); 
TB = J(Xs,1,0); 
 
do perm = 1 to &n_perms; 
 

run permute(Resid_wls,Perm_Res); 
 
* +----------------------------------------+ 

   Freedman and Lane Method 
  +----------------------------------------+; 
   do XX = 2 to Xs+1; 
     new_y = Perm_Res[,XX] + pred_wls[,XX]; 
     run calcreq(new_y,n_vec,X_Matrix,j7,j1,j2,j3,j4, pcorr_i,j5,j6); 
     if pcorr_i[XX-1,1]>partcorr[XX-1,1] then FL[XX-1,1] = FL[XX-

1,1] + 1; 
     free new_y j1 j2 j3 j4 j5 j6 j7; 
   end; 
* +----------------------------------------+ 

   Kennedy Method  
  +----------------------------------------+; 
  K_corr = J(Xs,1,0); 
  do col = 1 to Xs; 
    num = 0; denom1 = 0; denom2 = 0; 
    do row = 1 to k; 
      num = num + Vi[row,1]#(Perm_Res[row,col+1] # 

resid_ols[row,col])##2; 
      denom1 = denom1 + Vi[row,1]#Perm_Res[row,col+1]##2; 
      denom2 = denom2 + resid_ols[row,col]##2; 
    end; 
    K_corr[col,1] = num/(denom1 # denom2); 
    if K_corr[col,1]>partcorr[col,1] then Ken[col,1] =  

Ken[col,1] + 1; 
  end; 
* +----------------------------------------+ 

   Manly Method 
  +----------------------------------------+; 
   new_y = Perm_Res[,5]; 
   run calcreq(new_y,n_vec,X_Matrix,j7,j1,j2,j3,j4,pcorr_i,j5,j6); 
   free new_y j1 j2 j3 j4 j5 j6 j7; 
   do XX = 2 to Xs+1; 
     if pcorr_i[XX-1,1]>partcorr[XX-1,1] then MN[XX-1,1] = MN[XX-

1,1] + 1; 
   end; 
* +----------------------------------------+ 

   Ter Braak Method 
  +----------------------------------------+; 
   new_y = Perm_Res[,1] + pred_wls[,1]; 
   run calcreq(new_y,n_vec,X_Matrix,j7,j1,j2,j3,j4,pcorr_i,j5,j6); 
   free new_y j1 j2 j3 j4 j5 j6 j7; 
   do XX = 2 to Xs+1; 
     if pcorr_i[XX-1,1]>partcorr[XX-1,1] then TB[XX-1,1] = TB[XX-

1,1] + 1; 
   end; 
end; * end the permutation loop; 
 
do z = 1 to Xs; 

FL[z,1] = FL[z,1]/&n_perms;  
Ken[z,1] = Ken[z,1]/&n_perms;  
MN[z,1] = MN[z,1]/&n_perms;  
TB[z,1] = TB[z,1]/&n_perms;  

end; 
nperms = &n_perms; 
 
* +----------------------------------------+ 

Create Output Table 
  +----------------------------------------+; 
file print; 
put @1 'Linear Model for Meta Analysis' / 
@1 'Tests of Regression Weights' / 
@1 '--------------------------' / 
@1 'N of Studies:' @48 k 8. / 
@1 'Number of Permutations: ' @48 nperms 8. // 
@1 '---------------------------------------------------------------------' / 
@1 '                            Probabilities Under Ho: beta = 0' / 
@1 '                    -------------------------------------------------' / 
@1 '          Parameter            Freedman                        Ter'/ 
@1 'Regressor Estimate     WLS       Lane    Kennedy    Manly     
Braak' / 
@1 '--------- --------- --------- --------- --------- --------- ---------'; 
do i = 1 to &n_x; 
  p_FL = FL[i,1];  

   if p_FL < &alpha then flagFL = '*'; else flagFL = ' '; 
  p_KN = Ken[i,1]; 

   if p_KN < &alpha then flagKN = '*'; else flagKN = ' '; 
  p_MN = MN[i,1]; 

   if p_MN < &alpha then flagMN = '*'; else flagMN = ' '; 
  p_TB = TB[i,1]; 

   if p_TB < &alpha then flagTB = '*'; else flagTB = ' '; 
  p_WS = PROB_FEZ[i,1]; 

   if p_WS < &alpha then flagWS = '*'; else flagWS = ' '; 
  beta = B_wls[i+1,1]; 
 



  

  file print; 
  put @4 i 3. @12 beta 6.3 @22 p_WS 5.3 @28 flagWS  

@32 p_FL 5.3 @38 flagFL @42 p_KN 5.3 @48 flagKN @52 
p_MN 5.3 @58 flagMN @62 p_TB 5.3 @68 flagTB;  

end; 
 
file print; 
put  
@1 '---------------------------------------------------------------------'; 
quit; 
%mend; 
 
 
INVOKING THE MACRO 
The easiest way in which the macro METAPERM may be 
used is to simply create a SAS dataset that inputs the 
sample effect sizes, sample sizes, and study 
characteristics that are to be included in the meta-analytic 
model. The macro is then called, using as arguments the 
name of the dataset, the name of the variable that 
contains the effect size, the names of the two variables 
that contain the sample sizes for each effect size, the 
number of regressor variables, the number of 
permutations to execute and the nominal level of alpha for 
the tests of regression weights. For example, the following 
code reads sample effect sizes, their corresponding 
sample sizes, and values of five study characteristics. The 
data are read into a SAS dataset called ONE and are 
referenced by the variable names d_value, treat_n, 
control_n, and X1 – X5. The call to the macro 
METAPERM requests the tests of regression weights to 
be conducted at an alpha level of .05, using 5000 
permutations. 
 
data one; 
 input d_value treat_n control_n x1 x2 x3 x4 x5; 
cards; 
-0.7874    10  10   14   1  48  1.6   10 
-1.1918    51  56   09   2  12  2.0     5 
0.51139   80  74   20   4  20  2.4   10 
0.53098   25  25   19   4  29  1.3   15 
. 
. 
.       
; 
%METAPERM (one,d_value,treat_n,control_n,5,5000,.05) 
run; 
 
OUTPUT FROM MACRO METAPERM 
Table 1 provides an example of the output produced by 
the macro METAPERM. The estimated regression weights 
(obtained by WLS) are reported for each hypothesized 
moderator variable in the model. The probabilities 
associated with each regression weight, obtained using 
the traditional WLS test and the four permutation tests are 
reported and probabilities that are less than the identified 
nominal level of alpha are flagged with an asterisk. 

In this example, results were obtained from a set of 
70 effect sizes. The meta-analytic linear model that was fit 
to these data is 

δ̂ = -0.387 X1 + 0.009 X2 – 0.062 X3 + 0.038 X4 – 0.055 X5 

The tests of each regression weight in this model suggest 
that X1 is a moderator variable, but that the remaining 

regressors are not statistically significantly related to the 
observed study effect sizes after controlling for X1. For the 
test of the first regression weight, the traditional WLS test 
yielded a probability less than .0001, while the Freedman 
and Lane, Kennedy and Manly tests resulted in slightly 
larger probabilities (ranging from .0004 to .0006). 
However, because the probabilities associated with all of 
these tests are less than the nominal alpha level (.05), 
these four probability values are flagged with an asterisk in 
the printed output. In contrast, the Ter Braak permutation 
test failed to reject the null hypothesis associated with the 
regression weight of X1 (p < .218), so this probability is not 
flagged. 
 
Table 1 
Linear Model for Meta Analysis 
Tests of Regression Weights 
------------------------------------------------------------------------------ 
N of Studies:                                                                   70 
Number of Permutations:                                            5000 
 
------------------------------------------------------------------------------ 
                                  Probabilities Under Ho: beta = 0 
                        ---------------------------------------------------------- 
        Parameter           Freedman                                  Ter 
Reg  Estimate    WLS     Lane      Kennedy   Manly    Braak 
-----  ------------- --------- -----------  ------------  ---------- ---------- 
  1      -0.387     0.000 *   0.006 *   0.004 *     0.004 *   0.218 
  2       0.009     0.905      0.940     0.942       0.938      0.938 
  3      -0.062     0.454      0.802     0.810       0.810      0.824 
  4       0.038     0.587      0.942     0.938       0.940      0.938 
  5      -0.055     0.586      0.918     0.888       0.920      0.934 
------------------------------------------------------------------------------ 

 

COMPARISON OF PERMUTATION METHODS 
The four permutation approaches were compared in a 
recent Monte Carlo study (reported in Kromrey & Hogarty, 
2002; and Hogarty & Kromrey, 2003). The use of 
simulation methods allows the control and manipulation of 
research design factors and the incorporation of sampling 
error into the analyses.  Observations in primary studies 
were generated under known population conditions; then 
the primary studies were combined to simulate 
meta-analyses. Factors included in the simulation study 
were (a) number of primary studies in each meta-analysis, 
(b) sample sizes of the two groups in each primary study, 
(c) group variances in the primary studies, (d) population 
distribution shape in the primary studies, (e) magnitude of 
the moderating variables’ effect, and (f) the correlation 
between moderating variables. 

The results of these studies demonstrated the 
sensitivity of the WLS test to violations of the assumption 
of homogeneity of variance in the primary studies, 
conditions under which the WLS approach provided 
inflated Type I error rates. Such violations are particularly 
pernicious in the meta-analytic context because meta-
analysts must rely on details in the reports of primary 
studies to evaluate the tenability of this assumption 
(Keselman, et al., 1998). The four permutation tests 
evidenced superior Type I error control in these 
conditions. Among these procedures, the Manly (1997) 
and the Freedman and Lane (1983) evidenced the 
greatest power when large numbers of studies were 
available in the meta-analysis (k = 50 or k = 100), while 
the Kennedy (1995) permutation strategy provided the 



  

greatest power with few studies in the meta-analysis (k = 
10). The Ter Braak test was conservative across most of 
the conditions examined, resulting in very low power 
estimates. However, for conditions in which the normal 
theory assumptions hold, the WLS test was notably more 
powerful than any of the permutation tests. 

CONCLUSIONS 
Meta-analysis has become increasingly important for 

the synthesis of research results in a variety of fields, 
including education, the behavioral sciences and 
medicine. The accuracy of inferences derived from meta-
analysis depends upon the appropriate application of 
statistical tools. As the use of meta-analytic methods 
becomes more commonplace, researchers must remain 
mindful of the limitations of certain estimates.  Permutation 
tests can provide a robust alternative to traditional 
parametric tests for meta-analysis when critical 
assumptions are violated.  

The macro METAPERM is provided to facilitate 
researchers’ calculation and use of four permutation tests 
for testing moderating effects in meta-analysis. Although 
the macro, as provided, is limited to the analysis of 
standardized mean differences as effect sizes (i.e., 
Cohen’s d), the code is easily modified for the analysis of 
other indices of effect magnitude. For example, the 
analysis of Pearson Product Moment Correlation 
Coefficients requires a modification of the calculation of 
the variance in these effect sizes, and the incorporation of 
Fisher’s z transformation to normalize the sampling 
distribution of r. 
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